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Quantifying Uncertainty of Effective Transport Parameters
Zhiming Lu,1 Hailin Deng,2 Zhenxue Dai,1 Andrew V. Wolfsberg,1 Paul Reimus,1

Upscaling of transport parameters has been widely used
in field-scale transport models to incorporate their subgrid
heterogeneities. A typical practice is that single effective
parameter values are used in upscaling the transport equa-
tions and uncertainties of the effective parameters are not
taken into account. In this study, by taking solute transport
in fractured rocks as an example, we demonstrate that the
effective transport parameters may be treated as random
variables and characterized by their means and variances,
both of which are scale-dependent. When the dimension-
less domain (or block) size is very large, the variability of
the effective parameters is very small, and their mean effec-
tive parameter values may be directly applied to field-scale
transport modeling. However, when the dimensionless do-
main size is small, the variability of the effective parameters
could be very large. As a consequence, in field-scale model-
ing, one should take into account the variability of effective
parameters. Illustrative examples show that results from
transport models with variable effective parameters are su-
perior to those with single effective parameters.

1. Introduction

It is well known that geologic formations are physically
and chemically heterogeneous at various length scales. A
conventional approach to modeling flow and transport in
heterogeneous geological formations is to incorporate the
overall heterogeneity of the system into models. This is com-
putationally very demanding for field-scale numerical simu-
lations. As a result, in modeling flow and transport in such
field-scale heterogeneous porous media, it is quite often that
the size of grid blocks in numerical models is much larger
than the scale at which measurements of flow and trans-
port parameters are taken. For example, some transport
parameters are often measured at the column scale, which
is much smaller than grid blocks in field-scale simulations.
Therefore, one needs to assign flow and transport parame-
ter values to numerical grid blocks based on statistics of the
parameters derived from the measurement scale. The values
at the grid blocks, called upscaled parameter values or effec-
tive values, should include the effect of subgrid heterogeneity
and can be derived by upscaling approaches that define an
equivalent homogeneous medium with upscaled (effective or
macroscopic) flow and transport properties.

Many studies on the scaling of transport parameters in
fractured rock have been conducted [Berkowitz and Scher,
1998; Reimus et al., 2003; Dai et al., 2007; Liu et al., 2007;
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Frampton and Cvetkovic, 2007; Dai et al., 2009; among oth-
ers]. In a simplified fracture model, the fractures may be
considered as the primary pathway for flow in fractured
rocks and the matrix as a reservoir to store solutes tem-
porarily, and exchange of solutes between fractures and ma-
trix are through matrix diffusion and sorption. The rate
of mass transfer between fractures and surrounding matrix
can be described by a mass transfer coefficient [Reimus et
al., 2003]. This parameter includes the lumped effect of
the matrix diffusion coefficient, retardation factor, fracture
aperture, and matrix porosity.

Dai et al. [2009] developed a methodology to upscale
matrix sorption coefficients for fractured-rock systems by
assuming that the tortuosity and the retardation factor are
uncorrelated random fields. The breakthrough curve (BTC)
derived from the transport simulation using the upscaled ef-
fective tortuosity and effective retardation factor was com-
pared with the BTC from a simulation with the geomet-
ric mean parameter values and the mean BTC from Monte
Carlo simulations, which was consider as “true” BTC. Their
results indicate that, while the BTC from effective parame-
ter values is closer to the true BTC at the late time, large
discrepancy has been observed at the early time. This im-
plies that single effective parameter values may not be ade-
quate to capture heterogeneities of the parameter fields and
may lead to large discrepancy in predicting breakthrough
curves.

In this study, based on the mass transfer coefficient be-
tween the fracture and matrix, we first derived analytical
expressions for the scale-dependent mean and variance of
the effective tortuosity and the effective retardation factor.
Using an illustrative example, we then demonstrated that
results from transport models with variable effective param-
eters are superior to those with single effective parameters.

2. Mathematical Development

A fracture-matrix system may be simplified as a set of
parallel-plate fractures of constant aperture in surrounding
matrix. Solute transport in the system may be modeled as a
one-dimensional advection-dispersion process with fluid flow
in fractures only and solute diffusion into the surrounding
matrix in the direction perpendicular to the fracture flow
[Maloszewski and Zuber, 1985; Reimus et al., 2003].

The mass transfer between the fracture and matrix can
be characterized by a mass transfer coefficient defined as
[Reimus, 2003; Dai et at., 2009]: CMT = φ

√
D0τR/bη,

where D0 is the diffusion coefficient of the species of interest
in free water, b is the half aperture, η and φ are respectively
the porosity of the fracture and that of the matrix, R and
τ are respectively the retardation factor and tortuosity of
the matrix. It is assumed that R and τ are spatial random
fields, which vary in the flow direction but are constants in
the direction perpendicular to fracture flow.

Because matrix properties vary spatially, the mass trans-
fer coefficient can also be considered as a one-dimensional
random variable along the fracture. The field-scale effective
mass transfer coefficient may be expressed as a volume aver-
age of the measurement-scale mass transfer coefficients [Dai
et al., 2009]:

φ̃
√

D0τ̃ R̃

η̃b̃
=

1

L

∫

L

φ
√

D0τR

ηb
dx, (1)

1
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where L is the length of the one-dimensional domain (along
the fracture), and the tilde above each variable denotes the
effective quantity. By assuming φ, η, and b are deterministic
constants, this equation can be rewritten as:

τ̃ R̃ =

[
1

L

∫

L

√
τRdx

]2

. (2)

We further assume that τ and R are two log-normally dis-
tributed, second-order stationary random fields, and de-
compose them formally as Y = ln(R) = 〈Y 〉 + Y ′(x) and
Z = ln(τ) = 〈Z〉 + Z′(x), where 〈Y 〉 and 〈Z〉 are means of
Y and Z, and Y ′(x) and Z′(x) are their zero-mean pertur-
bations. Substituting these decompositions into (2) yields

τ̃ R̃ =
τGRG

L2

∫

L

∫

L

e(
1
2 [Y ′(x)+Y ′(y)+Z′(x)+Z′(y)])dxdy, (3)

where τG = exp(〈Y 〉) and RG = exp(〈Z〉) are geometric
means of τ and R, respectively.

Our purpose is to find individually the moments of ef-
fective tortuosity τ̃ and effective retardation factor R̃. Be-
cause these two effective parameters appear in (3) as their
product, we will derive moments of τ̃ and R̃ by first finding
those of τ̃ R̃. For convenience, we denote w = τ̃ R̃ and write
w = w(0) + w(1) + w(2) + · · ·, where numbers in parentheses
represent the order in terms of standard deviations of input
parameters. Expanding the right side of (3) up to second
order and separating terms at different orders yield

w(0) = τGRG, (4)

w(1) =
τGRG

L

∫

L

[Y ′(x) + Z′(x)]dx, (5)

w(2) =
τGRG

4L

[∫

L

[Y ′(x) + Z′(x)]2dx

+
1

L

∫

L

∫

L

[Y ′(x) + Z′(x)][Y ′(y) + Z′(y)]dxdy

]
. (6)

From (4)-(6) it is seen that the moments of w depend on
the auto-correlation of τ and R and the possible cross-
correlation between these two random fields. To evaluate the
moments of w, we have to assume these correlation struc-
tures. For simplicity, we assume that these two random are
correlated and they have the same correlation structures.
Otherwise, we need to find the square roots of their covari-
ances [Oliver, 2003], which complicates the problem.

The mean of w up to second order 〈w〉 ≈ w(0) + 〈w(2)〉
can be obtained by taking expectation of (4)-(6) and carry-
ing out integrals:

〈w〉 ≈ τGRG

[
1 +

1

4

[
σ2

Y + σ2
Z +2ρYZσY σZ

]
(1+γ(l))

]
,(7)

where σ2
Y and σ2

Z are variances of Y = ln R and Z =
ln τ , respectively, ρYZ is their cross-correlation coefficient,
l = L/λ is the dimensionless domain size, and γ(l) =

(1/l2)
∫ l

0

∫ l

0
ρ(x−y)dxdy is called the variance function [Van-

marcke, 1983; Li et al., 2009], which measures the reduc-
tion of the point variance under the average over a seg-
ment of dimensionless length l. The variance function may
be derived analytically for some special cases [Li et al.,
2009]. For example, for the exponential correlation function
ρ(x, y) = exp(−|x− y|/λ), we have γ(l) = 2(l− 1 + e−l)/l2.
One important feature of the variance function is that γ(l)

is a monotonic decrease function of l satisfying 0 ≤ γ(l) ≤ 1
with γ(0) = 1 and γ(∞) = 0.

The variance of w up to second order can be derived from
(5) as

σ2
w = τ2

GR2
G

[
σ2

Y + σ2
Z + 2ρYZσY σZ

]
γ(l). (8)

Equations (7)-(8) will be used to derive the moments of the
effective tortuosity and retardation factor.

2.1. Moments of Effective Tortuosity τ̃

Equations (7)-(8) give the mean and variance of the prod-
uct of the effective tortuosity and the effective retardation
factor. The mean and variance for each of these two effective
parameters may be estimated by assuming that the change
of tortuosity due to transport processes can be negligible.
Under this assumption, the statistics of the tortuosity can
be obtained by considering transport of conservative solutes,
and thus the perturbation, mean, and variance of tortuos-
ity can be derived directly from (5), (7), and (8) by setting
R ≡ 1, σ2

Y = 0, and ρYZ = 0:

τ̃ ′ =
τG

L

∫

L

Z′(x)dx, (9)

〈τ̃〉 = τG

[
1 +

σ2
Z

4
(1 + γ(l))

]
, (10)

σ2
τ̃ = τ2

Gσ2
Zγ(l). (11)

Equations (10)-(11) indicate that the mean and variance of
the effective tortuosity depend on the scale l = L/λ. Be-
cause the range of the variance function γ(l) is between zero
and one, the effective tortuosity is always larger than its
geometric mean, and the range of the mean effective tortu-
osity is τG exp(σ2

Z/4) ≤ 〈τ̃〉 ≤ τG exp(σ2
Z/2) = τ̃A, where

the upper bound is its arithmetic mean. In addition, the
variance of the effective tortuosity σ2

τ̃ is always smaller than

the variance of tortuosity σ2
τ = τ2

Geσ2
Z (eσ2

Z − 1). When l is
very small, γ(l) approaches one and σ2

τ̃ ≈ τ2
Gσ2

Z , which is
the first-order approximation of σ2

τ .
To illustrate the characteristics of the effective tortuosity,

we use the example in Dai et al. [2009]. The mean and vari-
ance of log tortuosity are 〈Z〉 = −3.615 (τG = 0.0269) and
σ2

Z = 0.4, respectively. The calculated mean and variance of
the effective tortuosity using (10)-(11) as functions of l are
plotted in Figure 1(a). Also plotted in the figure is the con-
fidence interval denoted as upper and lower bounds, which
are computed from plus and minus two standard deviations
of the log mean effective tortuosity.

First, it is important to note from the figure that the
mean effective tortuosity is scale-dependent; it decreases
with the increase of l. In other words, for a fixed correlation
length, a larger domain (larger l) will lead to smaller mean
effective tortuosity. Second, the range of the mean effective
tortuosity depends on the variability. In fact, the ratio of
the maximum mean effective tortuosity to its minimum is
exp(σ2

Z/4). Third, as mentioned before, the mean effective
tortuosity is always larger than the geometric mean, and
the ratio between the maximum mean effective tortuosity
and the geometric mean is exp(σ2

Z/2), which is 1.20 in this
example. More importantly, the variance of the effective tor-
tuosity decreases with l. The variance approaches zero when
l is sufficiently large. This implies that, if the domain is very
large comparing to the correlation length λ, one single value
of the effective tortuosity may be used. On the other hand,
if the domain size is very small, the variance of the effective
tortuosity becomes τ2

Gσ2
Z , which is the first-order approxi-

mation of the variance of the tortuosity at the measurement

scale, σ2
τ = τ2

Geσ2
Z (eσ2

Z −1). In this case, one should not use
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a single effective tortuosity value to represent the randomly
heterogeneous tortuosity field. Instead, one should sample
the effective tortuosity values based on the statistics of the
effective tortuosity given in (10)-(11) and use these values
in transport modeling.

2.2. Moments of Effective Retardation Factor R̃

The moments of R̃ can be derived from moments of τ̃ and
w = τ̃ R̃. Expanding w = τ̃ R̃ = (〈τ̃〉 + τ̃ ′)(〈R̃〉 + R̃′) and
taking its expectation yield

〈w〉 = 〈τ̃〉〈R̃〉+ Cτ̃R̃, (12)

where Cτ̃R̃ = 〈τ̃ ′R̃′〉 is the one-point cross-covariance be-
tween τ̃ and R̃. In Dai et al. [2009], it was assumed that τ̃
and R̃ were uncorrelated, i.e., Cτ̃R̃ = 0, and 〈R̃〉 was com-
puted directly from (12) as 〈w〉/〈τ̃〉. However, these two
effective parameters may be correlated even if τ and R at
the measurement scale are assumed to be uncorrelated, be-
cause these two effective parameters appear as their product
in (3). To evaluate 〈R̃〉, one has to find the one-point cross-
covariance Cτ̃R̃ first.

Subtracting (12) from w yields its perturbation

w′ = 〈R̃〉τ̃ ′ + 〈τ̃〉R̃′ + τ̃ ′R̃′ − Cτ̃R̃. (13)

To solving for 〈R̃〉, we multiply τ̃ ′ to (13), take expectation,
and ignore a third-order term:

Cwτ̃ = 〈R̃〉σ2
τ̃ + 〈τ̃〉Cτ̃R̃, (14)

where Cwτ̃ can be found using (5) and (9):

Cwτ̃ = τ2
GRG

[
σ2

Z + ρYZσY σZ

]
γ(l). (15)

Equations (12) and (14) has two unknowns 〈R̃〉 and Cτ̃R̃,
from which we can solve for 〈R̃〉 and Cτ̃ R̃:

〈R̃〉 =
〈τ̃〉〈w〉 − Cwτ̃

〈τ̃〉2 − σ2
τ̃

. (16)

Cτ̃R̃ = 〈w〉 − 〈τ̃〉〈R̃〉. (17)

The variance σ2
R̃

can be derived by first relating it to σ2
w

using (13):

σ2
w = 〈R̃〉2σ2

τ̃ + 〈τ̃〉2σ2
R̃ + 2〈τ̃〉〈R̃〉Cτ̃R̃, (18)

and then substituting Cτ̃R̃ in (17) into (18):

σ2
R̃ =

σ2
w + 〈R̃〉2σ2

τ̃ − 2〈R̃〉Cwτ̃

〈τ̃〉2 . (19)

Equations (16) and (19) will be used to evaluate the mean
and variance of the effective retardation factor R̃. For statis-
tics of tortuosity given previously and 〈Y 〉 = 3.919 (RG =
50.375) and σ2

Y = 0.6, the mean effective retardation fac-
tor as a function of l at three different levels of correlation
ρYZ = −1, 0, and 1 is illustrated in Figure 1(b).

Several important points can be made from this figure.
First, unlike the mean effective tortuosity, the mean effective
retardation factor can be smaller than its geometric mean
when the tortuosity and retardation factor are negatively,
perfectly correlated. However, when they are positively per-
fectly correlation, the mean effective retardation factor can
be much larger than RG. Such a difference on the effec-
tive retardation factor may lead to substantial difference in
transport simulations. Second, for all three different lev-
els of correlation, the mean effective retardation factor is

scale-dependent and a large scale will lead to a small mean
effective retardation factor. Third, the figure also shows that
the standard deviation of the effective retardation factor is
strongly dependent on l. When l is large, the variability
of R̃ is very small, which means that one may use one ef-
fective value in transport simulations. However, when l is
small, the variability of R̃ could be very large, which pre-
vent us from using a single effective value to approximate
the heterogeneous retardation factor.

In addition, such a scale effect depends on ρYZ . When
ln R and ln τ are highly, negatively correlated, the mean re-
tardation factor strongly depends on the scale (solid curve
with squares), while when they are highly, positively cor-
related, the scale effect on the mean retardation factor is
relatively small (solid curve with cycles). Furthermore, al-
though the mean and variance of the tortuosity and retar-
dation factor are the same in all three cases, the mean ef-
fective retardation factor can be significantly different from
each other. More importantly, for any fixed ρYZ , it is noted
that the mean retardation factor is almost a constant if the
dimensionless domain size in larger than about 100, which
may be defined as a critical domain size. Existing of such
a critical value can also be determined from the variance of
the effective retardation factor R̃. When the dimensionless
domain is large than 100, σ2

R̃
is almost zero, and it increases

as the dimensionless domain becomes smaller. The figure
indicates that σ2

R̃
is large if the tortuosity and the retarda-

tion factor are strongly, negatively correlated, although in
this case the mean retardation factor is much smaller than
those in other two cases.

3. Illustrative Example

We considered the same case as illustrated in Dai et al.
[2009] and conducted two sets of Monte Carlo simulations
to assess the accuracy of moments of the effective tortuosity
and the effective retardation factor, and more importantly,
to verify our concept that using multiple samples of effective
parameters from their statistics rather than one single effec-
tive parameter value in transport modeling would improve
simulation results.

The solute transport in the fracture-matrix system was
solved using the generalized double porosity model (GDPM)
[Zyvoloski et al., 2008]. The GDPM numerical model has a
fracture length of 1000 m, fracture spacing of 2 m, and half
aperture of 0.001 m. The fracture is discretized uniformly
into 1000 element (1001 nodes) with δx = 1m and each frac-
ture node is connected to 10 matrix nodes arranged in a line
perpendicular to the fracture direction with a variable spa-
tial spacing from 0.001 to 0.4 m (Fig. 1 of Dai et al., 2009).
At the inlet, the water was injected at a constant rate of
0.012 kg/s and the solute concentration was fixed at a unit.

In the first set of Monte Carlo simulations, for each sim-
ulation, two random fields Y (x) and Z(x) with parameter
statistics given above were generated using the random field
generator described in Zhang and Lu [2004]. The gener-
ated fields were then converted to heterogeneous fields of
matrix diffusion coefficients Dm(x) = D0 exp(Z(x)) and
of sorption coefficients Kd(x) = φ(eY (x) − 1)/ρm, where
D0 = 6.64×10−10 m2/s is the molecular diffusion coefficient
of uranium in free water, ρm = 2500 kg/m2 is the matrix
density, and φ = 0.2 is matrix porosity. Transport equa-
tions (Eqn. (1) and (2) of Dai et al., 2009) were then solved
for each realization using the GDPM model of Zyvoloski et
al. [2008] and the concentration breakthrough at the out-
flow fracture node was recorded. Total of 10,000 Monte
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Carlo simulations were conducted and it has been shown
that the number of realizations is large enough to ensure
the convergence of the Monte Carlo simulations. The mean
breakthrough curve (BTC) computed from this set of Monte
Carlo simulations is considered as the “true” solutions to the
problem.

In Dai et al. [2009], they compared three BTC’s: the
mean BTC calculated from Monte Carlo simulations, the
one derived using geometric means of the tortuosity and the
retardation factor, and the one from the effective tortuosity
and the effective retardation factor which were computed
by assuming that the effective tortuosity and the effective
retardation factor were uncorrelated. Their results indicate
that, at the later time, the BTC simulated using the ef-
fective parameter values matches the Monte Carlo results
much better than the BTC from the geometric mean values
does. However, at the early time, large deviations are ob-
served between the true BTC from Monte Carlo simulations
and the BTC from the effective parameter values, and the
BTC from the geometric parameter values is closer to Monte
Carlo results.

Our hypothesis is that single effective parameter values
may not be adequate to characterize the transport process in
such a heterogeneous fracture-matrix system unless the do-
main is sufficient large comparing to the correlation lengths
of the tortuosity and/or the retardation factor. If the do-
main is not large enough, the uncertainties associated with
the effective parameters may not be neglected as illustrated
in Figures 1, and therefore one should take these uncertain-
ties into account.

To test our hypothesis, the mean and variance of R̃ and
τ̃ were calculated using equations (10)-(11) and (16)-(19):
〈τ̃〉 = 0.0305, σ2

τ̃ = 9.3×10−5, 〈R̃〉 = 60.92, and σ2
R̃

= 517.3.
Based on these statistics of the effective parameters, we con-
ducted the second set of Monte Carlo simulations by gener-
ating 5000 sets of effective tortuosity and effective retarda-
tion factor, solving transport equations, and computing the
mean BTC from all these realizations. This BTC is plot-
ted in Figure 2, together with other three BTC’s described
above. The figure shows that the BTC derived from Monte
Carlo samples of the effective parameters fits the BTC of the
Monte Carlo simulations with spatially variable transport
parameters very well, and outperforms both BTC’s from the
geometric mean values and from single effective parameter
values.

It appears that in our upscaling procedure the original
Monte Carlo simulations are replaced by another set of
Monte Carlo simulations. However, in the original Monte
Carlo simulations both the tortuosity and retardation fac-
tor vary not only in probability space but also on the real
space, while in the second set of Monte Carlo simulations
the effective parameters are random constants. One of the
advantages is that the numerical transport simulations with
homogeneous parameters will be computationally more ef-
ficient, and in some cases, even analytical solutions may be
available.

4. Conclusion and Discussion

Transport parameters are commonly obtained from mea-
surements at the column scale, which is much smaller than
the numerical grid size in field-scale simulations. Therefore,
one needs to assign transport parameter values to numerical
grid blocks based on statistics of the parameters calculated
from the measurement scale. The values at the grid blocks,
called upscaled parameter values or effective values, should
include the effect of subgrid heterogeneity and can be de-
rived by upscaling approaches that define an equivalent ho-
mogeneous medium with upscaled (effective or macroscopic)
transport properties. A typical practice is that single effec-
tive parameter values are used in upscaling the transport

equations and uncertainties of the effective parameters are
not taken into account.

In this study, by taking the upscaling of tortuosity and re-
tardation factor for a fracture-matrix system as an example,
we demonstrated that uncertainty of effective parameters
should not be ignored when the dimensionless domain size
is relatively small. We first derived analytical expressions
for the mean and variance of effective transport parameters
(tortuosity and retardation factor) based on the transport
equations for the fracture-matrix system. Our numerical re-
sults show that both the mean and variance of the effective
tortuosity and retardation factor are scale dependent. The
means of both effective parameters are larger than their geo-
metric means, and the difference depends on the scale. More
importantly, the variance of the effective parameters can be
very large when the scale is small, and it can be negligible
only when the scale is large enough.
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Figure caption
Figure 1. Scale dependence of the mean and standard

deviation of (a) the effective tortuosity, and (b) the effective
retardation factor with different levels of correlation between
tortuosity and retardation factor.

Figure 2. Comparison of BTC’s from different modeling
approaches: Conventional Monte Carlo simulations (solid
cycles), geometric mean values (dashed line), single effec-
tive parameter values (dashed-dotted line), and Monte Carlo
simulations of effective parameters (solid line).
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Figure 1. Scale dependence of the mean and standard
deviation of (a) the effective tortuosity, and (b) the effec-
tive retardation factor with different levels of correlation
between tortuosity and retardation factor.
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Figure 2. Comparison of BTC’s from different model-
ing approaches: Conventional Monte Carlo simulations
(solid cycles), geometric mean values (dashed line), sin-
gle effective parameter values (dashed-dotted line), and
Monte Carlo simulations of effective parameters (solid
line).


